AP MC Take Home Quiz (Calculator) - #1

- (1) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- (2) The inverse of a trigonometric function f may be indicated using the inverse function notation f^{-1} or with the prefix "arc" (e.g., $\sin^{-1} x = \arcsin x$).

SHOW ALL WORK. You may complete on this paper or a separate piece of paper. You may work together with others to understand how to find the solutions, but all submitted work must be your own.

A

1.
$$\int xe^{x^2}dx =$$

$$(A)\frac{1}{2}e^{x^{2}} + C (B)e^{x^{2}} + C (C)xe^{x^{2}} + C (D)\frac{1}{2}e^{2x} + C (E)e^{2x} + C$$

$$\begin{cases} e^{4}du = e^{4} & \frac{1}{2}\int zxe^{x^{2}}dx = \frac{1}{2}\int e^{4}du \\ u = x^{2} & = \frac{1}{2}e^{x^{2}} + C \end{cases}$$

$$du = 2x dx$$

D

2. Given that y(1) = -3 and $\frac{dy}{dx} = 2x + y$, what is the approximation for y(2) if Euler's method is used with a step size of 0.5, starting at x = 1?

(A)
$$-5$$
 (B) -4.25 (C) -4 (D) -3.75 (E) -3.5

$$y_1 = -3 + (0.5)(2(1) + (-3)) = -3 + -\frac{1}{2} = -3.5$$

 $y_2 = -3.5 + (0.5)(2(1.5) + (-7.5)) = -3.5 + (-0.25) = -3.75$

3. The graph of the piecewise linear function f is shown in the figure above. If $g(x) = \int_{-2}^{x} f(t)dt$, which of the following values is greatest?

(A)
$$g(-3)$$
 (B) $g(-2)$

(B)
$$g(-2)$$

(C)
$$g(0)$$

(E)
$$g(2)$$

4. In the xy-plane, what is the slope of the line tangent to the graph of $x^2 + xy + y^2 = 7$ at the point (2, 1)?

(A)
$$-\frac{4}{3}$$

(B)
$$-\frac{5}{4}$$
 (C) -1 (D) $-\frac{4}{5}$ (E) $-\frac{3}{4}$

$$(C) - 1$$

(D)
$$-\frac{4}{5}$$

(E)
$$-\frac{3}{4}$$

2x + (x)(dy) + (1)(y) + 2y dy = 0

$$\frac{dy}{dx} = \frac{-2x - y}{x + 2y}$$

(a)
$$(21)$$
 $\frac{dy}{dx} = \frac{-2(2)-1}{2+2(1)} = \frac{-5}{4}$